New England Fishery Management Council
50 WATER STREET | NEWBURYPORT, MASSACHUSETTS 01950 | PHONE 9784650492 | FAX 9784653116
John Pappalardo, Chairman | Paul J. Howard, Executive Director

MEMORANDUM

DATE:	January 14, 2008
TO:	Science and Statistical Committee
FROM:	Skate PDT
SUBJECT:	Skate rebuilding catch limit re-analysis

This analysis incorporates the new Data Poor Assessment Workshop ${ }^{1}$ skate catch time series into the previous PDT evaluation of skate rebuilding potential. While total landings were updated and new methods to allocate unclassified skate landings to species were developed in the DPWS, new discard estimates were completely revised using observer data which had not previously been included. As a result, the re-assignment of catches to skate species were revised and total discard estimates are substantially different than previous data used in the Draft Amendment 3 analysis.

Like the previous assessment, the new analyses evaluate the relationship between catch, relative exploitation (catch/biomass) and changes in stratified mean biomass estimated by the surveys (spring for little skate, fall for the remaining six species). To smooth out noise from annual indices, a 3-year moving average for catch and biomass with no lags was evaluated ${ }^{2}$. Based on this type of analysis, the PDT recommended and the SSC approved using the median relative exploitation ratio (C / B) applied to the latest three year stratified mean biomass as an interim catch limit to initiate rebuilding of smooth, thorny, and winter skates.

The median values (2005-2007) for each species were summed and applied as an aggregate skate ABC/ACT, accounting for the partial effectiveness (assumed 90\%) of barndoor, smooth, and thorny skate landings prohibitions. A value of 75% of the threshold catch limit was recommended to account for scientific and management uncertainty, approved for a management target, and applied as an ACT in the Draft Amendment 3 document. The average discard rate for 2004-2006 and two different historic landings splits between the skate wing and bait fisheries was then applied to estimate TALs for each fishery. The same procedure was applied in this analysis, except that the 2005-2007 discard rate was

[^0]applied, now that 2007 discard estimates have been calculated in the DPWS. A summary of comparative results are given in the table below.

Data source	Catch limit, mt (ABC/ACL)	Catch target, mt (ACT)	Discard rate	Total allowable landings, mt (TAL)	MSY (landings with biomass @ target)	Landings reduction from 2007 to achieve TAL	
						Wing	Bait
Draft Amendment 3	22,612	16,959	38\%	10,484	53,731	-45\%	-43\%
DPWS Length composition method.	24,688	15,546	58\%	7,786	64,196	-57\%	-63\%
DPWS selectivity ogive method	23,826	17,864	59\%	7,328	63,240	-65\%	-60\%

Although they were initially different and derived independently, the two DPWS method catch series have become similar with refinement. As indicated above, there really is little difference between them in the context of the Amendment 3 rebuilding prospects at catch rates below and above the median values for the time series. Even the overall catch limit (landings and discards) are similar to the Draft Amendment 3 results, but the higher discard estimates result in a lower fraction (41-42\%) of the total catch being allocated to landings (i.e. TAL).

Analysis of rebuilding potential, however, shows that the linkage between low exploitation rates and increases in biomass is either non-existent or not significant. None of the relationships are very strong and are probably not very predictive of rebuilding potential at lower catch levels. There is little or no relationship between the C/B ratio and changes in biomass for barndoor, clearnose, little, or thorny skates. The relationship for smooth and rosette seem entirely attributable to a few number of points which may be related to transient oceanographic events or sampling variability, while the relationship for winter seems to be related to serial autocorrelation.

Catch time series

For the Amendment 3 DEIS, the PDT estimated landings species composition by applying the survey biomass proportions for exploitable skates in each three-digit statistical area, as determined by a fitted logistic selectivity curve (fitting observed commercial kept skates to the survey in equivalent areas and seasons) of observed kept skate lengths on survey length frequencies in each region and season. Although known at the time, this procedure had a technical flaw and inconsistency with the survey design, but was not thought to significantly skew the species allocations. During the DEIS comment period, NMFS commented on this flaw in the analysis and it would be addressed in the DPWS ${ }^{3}$. Although the Council was slated to take final action at the November 2008 meeting, NMFS recommended that the Council wait to receive these results to determine whether to proceed with Amendment 3.

[^1]During the Amendment 3 development, the PDT also only had regional estimates (Georges Bank/Southern New England and Mid-Atlantic) of aggregate skate discards to use in the Amendment 3 analyses. These discard estimates used SAW44-reviewed procedures, but used the Groundfish Assessment Review Meeting (GARM) area allocation tables ${ }^{4}$ to assign landings to statistical area and region. Because species composition of discards was not available at the time, the PDT used the regional skate discard estimates as a catch index for species by region (Georges Bank/Southern New England for thorny, smooth, winter, and little skates; Mid-Atlantic for clearnose and rosette skates).

The new catch series for this analysis allocate skate landings and discards to species based on surveyed biomass fractions using two different methods. These two methods were developed simultaneously, and independently arrived at similar results to one another. The details are described in the DPWS documents, but are summarized below. Each method has its pros and cons and both methods were accepted by the DPWS.

For the length composition method, the skate lengths of kept and discarded skates were binned into 5 cm intervals and applied to the survey biomass fractions by region. These biomass fractions were applied to total landings and total discard estimates by year, half-year, gear, and region (Gulf of Maine, Southern New England, and Mid-Atlantic). Discard to kept ratios were applied to total landings on all trips, also by year, half-year, gear, and region. The discard species composition was calculated in the same fashion as that for landings, using the length composition of discarded skates on observed trips. For both landings and discards, the species composition could only be determined since 1989, the first year of sea sampling data. Total discards were however hind-casted by applying the 1989-1991 DK ratio to dealer reported landings in earlier years.

For the selectivity ogive method of assigning species composition to skate landings and discards, the fraction of skate biomass for skate species were determined by estimating a selectivity ogive from kept skates on observed trips during 2004-2006 applied to surveyed skates in each three digit statistical area by year, gear, and season (spring, fall, and winter corresponding to the three trawl surveys). The survey biomass fractions were determined by applying the 2004-2006 selectivity ogive by year, season, sub-region, gear, and mesh (small, large, and extra-large for trawls and gillnets). Subsequent to the DPWS, these fractions were re-estimated by treating the fractions kept for vessels using gillnets separately for the skate wing and whole/bait fisheries ${ }^{5}$. This is the same procedure as the DPWS approved for trawls and recommended that it be used for the gillnet fishery as well.

Total discards were independently estimated for the DPWS by estimating the DK ratios ${ }^{6}$ for each year, gear, sub-region, season, and mesh and applying them to total landings on every trip reported by dealers and included in the GARM area allocation tables. Trips in these tables with unknown area allocations were distributed to areas, based on fishing activity for assigned trips in each state, year, and gear combination. Skate species allocations were made using the same procedure that the DPWS accepted for landings, using the selectivity ogive method, except that for trips landing skates the species composition of discards were determined by A - B, where A is the selectivity ogive fitted for catch and B is the selectivity ogive fitted for kept skates. For trips with no skate landings in the dealer data, only the

[^2]selectivity ogive for catch (A) was used to assign species composition to skate discards. Since the method uses the length distribution of skates in the survey to determine species composition, the species allocations could be assigned as far back as 1977.

This analysis of rebuilding potential described below uses the species composition of 1994-2007 landings and discards from each species allocation method independently to examine the effect of catch on changes in survey skate biomass. For 1977-1993, the total skate landings and both discard estimates were assigned the species composition determined by the selectivity ogive method (because there were no observed trips before 1989 and no GARM area allocation tables before 1994). Before the advent of the sea sampling program in 1989, both methods apply the 1989-1991 DK ratio to total landings. The data used in this analysis are shown in the following tables.

Table 1. Landings time series used in the rebuilding potential analysis and in estimating catch limits and targets associated with the median C/B exploitation ratio. Landings before 1994 were derived from the same time series of aggregate landings and species composition was assigned via the selectivity ogive method.

Year	Length composition method Landings Allocations						
	barndoor c	ceamose		rosette	smooth	thorny	winter
1964	4.62	0.00	1.14	0.03	0.29	20.05	4.57
1965	5.78	0.00	1.87	0.02	0.44	25.03	5.46
1966	3.41	0.00	1.26	0.00	0.20	21.49	4.54
1967	3.68	1.23	5.48	0.12	0.56	42.38	18.24
1968	2.62	1.55	2.45	0.00	0.40	20.84	7.83
1969	2.62	1.30	3.54	0.01	0.48	32.43	11.21
1970	1.95	0.47	4.79	0.03	0.52	46.86	14.97
1971	0.78	0.64	5.24	0.05	0.90	37.77	17.92
1972	1.61	0.00	6.05	0.00	0.74	51.57	25.93
1973	1.43	0.71	6.82	0.03	0.77	47.47	29.67
1974	1.19	0.75	6.42	0.03	0.66	40.68	30.37
1975	1.51	1.20	9.34	0.04	0.87	53.56	47.58
1976	1.30	1.31	9.37	0.04	0.79	48.36	51.03
1977	1.47	1.91	12.64	0.05	0.96	58.22	73.05
1978	2.51	4.26	26.30	0.10	1.78	107.16	160.49
1979	3.27	7.52	43.61	0.15	2.60	155.39	279.66
1980	3.08	10.14	55.63	0.19	2.89	170.84	373.34
1981	1.10	5.80	30.21	0.09	1.34	78.44	211.42
1982	0.02	8.68	50.86	0.21	1.14	88.77	279.02
1983	0.00	11.38	76.64	0.01	3.42	124.33	666.91
1984	0.28	22.71	69.73	0.28	1.59	114.00	622.20
1985	0.06	12.71	51.44	0.08	2.32	72.72	623.98
1986	0.36	13.84	30.73	0.10	4.26	78.53	858.28
1987	0.32	40.34	84.38	0.26	4.52	107.37	1202.52
1988	0.01	63.95	99.07	0.51	10.73	163.98	1775.47
1989	1.03	112.20	550.87	0.70	27.51	692.92	5322.07
1990	14.39	322.67	830.97	1.07	65.07	859.75	9308.58
1991	16.47	983.65	1332.93	3.82	51.05	1173.66	7770.72
1992	471.60	746.18	1379.39	4.11	77.86	2089.16	7757.00
1993	70.90	1054.90	2915.57	2.20	117.38	1581.75	7161.30
1994	134.20	973.71	1794.69	6.62	89.09	1966.44	3818.55
1995	83.11	348.48	1926.66	5.39	0.77	314.57	4453.48
1996	336.39	539.89	2399.89	11.01	0.37	759.51	10051.54
1997	281.04	748.73	3792.04	12.90	6.99	510.38	5353.70
1998	161.12	447.45	4028.73	27.33	7.83	628.19	8344.25
1999	452.37	324.36	3680.41	15.35	2.09	203.71	6866.57
2000	494.42	501.95	3336.02	19.96	7.67	466.39	8372.99
2001	1536.85	1860.07	1700.99	8.61	18.78	195.42	7655.28
2002	2123.66	640.20	2371.81	10.72	17.24	401.63	7094.18
2003	854.82	335.61	3302.87	5.82	8.55	302.94	9986.12
2004	844.52	344.54	1955.26	6.80	5.63	511.56	11787.82
2005	1976.34	168.47	3056.36	8.97	10.39	439.86	7650.58
2006	2632.83	384.49	2392.33	8.63	21.51	642.97	9256.81
2007	2011.46	361.73	3078.31	22.41	17.84	351.91	12860.80
1995-2007 proportions	7.9\%	4.0\%	21.3\%	0.1\%	0.1\%	3.3\%	63.2

Year	Selectivity ogive method Landings Allocations						
	barndoor	cleamose		rosette	smooth	thorny	winter
	4.62	0.00	1.14	0.03	0.29	20.05	4.57
1965	5.78	0.00	1.87	0.02	0.44	25.03	5.46
1966	3.41	0.00	1.26	0.00	0.20	21.49	4.54
1967	3.68	1.23	5.48	0.12	0.56	42.38	18.24
1968	2.62	1.55	2.45	0.00	0.40	20.84	7.83
1969	2.62	1.30	3.54	0.01	0.48	32.43	11.21
1970	1.95	0.47	4.79	0.03	0.52	46.86	14.97
1971	0.78	0.64	5.24	0.05	0.90	37.77	17.92
1972	1.61	0.00	6.05	0.00	0.74	51.57	25.93
1973	1.43	0.71	6.82	0.03	0.77	47.47	29.67
1974	1.19	0.75	6.42	0.03	0.66	40.68	30.37
1975	1.51	1.20	9.34	0.04	0.87	53.56	47.58
1976	1.30	1.31	9.37	0.04	0.79	48.36	51.03
1977	1.47	1.91	12.64	0.05	0.96	58.22	73.05
1978	2.51	4.26	26.30	0.10	1.78	107.16	160.49
1979	3.27	7.52	43.61	0.15	2.60	155.39	279.66
1980	3.08	10.14	55.63	0.19	2.89	170.84	373.34
1981	1.10	5.80	30.21	0.09	1.34	78.44	211.42
1982	0.02	8.68	50.86	0.21	1.14	88.77	279.02
1983	0.00	11.38	76.64	0.01	3.42	124.33	666.91
1984	0.28	22.71	69.73	0.28	1.59	114.00	622.20
1985	0.06	12.71	51.44	0.08	2.32	72.72	623.98
1986	0.36	13.84	30.73	0.10	4.26	78.53	858.28
1987	0.32	40.34	84.38	0.26	4.52	107.37	1202.52
1988	0.01	63.95	99.07	0.51	10.73	163.98	1775.47
1989	1.03	112.20	550.87	0.70	27.51	692.92	5322.07
1990	14.39	322.67	830.97	1.07	65.07	859.75	9308.58
1991	16.47	983.65	1332.93	3.82	51.05	1173.66	7770.72
1992	471.60	746.18	1379.39	4.11	77.86	2089.16	7757.00
1993	70.90	1054.90	2915.57	2.20	117.38	1581.75	7161.30
1994	112.38	10.09	717.39	0.00	29.39	2145.64	5309.57
1995	51.43	31.91	2109.72	0.80	27.59	1159.32	3051.41
1996	199.71	79.48	2436.66	0.18	71.95	1234.55	9877.93
1997	181.84	239.29	3748.39	0.12	68.67	1014.86	5195.41
1998	343.60	63.56	3084.12	0.27	67.25	2264.86	7233.26
1999	443.87	132.34	3482.30	0.93	67.71	888.61	6327.13
2000	514.35	268.18	3472.49	4.77	73.93	1847.52	6659.84
2001	540.10	193.70	2826.88	5.31	52.79	856.79	8184.23
2002	366.24	114.21	2663.35	1.00	60.25	1239.88	8521.89
2003	163.09	168.07	4685.24	1.50	18.09	298.09	10082.51
2004	111.30	51.86	2950.85	0.04	4.11	62.78	11017.90
2005	231.26	47.84	3277.84	0.12	28.78	63.84	8869.66
2006	668.31	55.51	3581.54	2.62	44.68	129.68	10571.61
2007	89.11	98.34	4019.34	2.96	8.03	207.92	13510.25
	2.3\%	0.9\%	25.1\%	0.0\%	0.4\%	6.7\%	64.6\%

Draft Amendment 3
$\begin{array}{r}\text { Year } \\ 1964 \\ 1966 \\ 1966 \\ 1967 \\ 1968 \\ 1999 \\ 1970 \\ 1971 \\ 1972 \\ 1997 \\ 1974 \\ 1997 \\ 1976 \\ 1977 \\ 1978 \\ 1999 \\ 1980 \\ 1981 \\ 1982 \\ 1983 \\ 1984 \\ 1985 \\ 1986 \\ 1987 \\ 1988 \\ 1999 \\ 1990 \\ 1991 \\ 1992 \\ 1993 \\ 1994 \\ 1995 \\ 1996 \\ 1997 \\ 1998 \\ 1999 \\ 2000 \\ 2001 \\ 2002 \\ 2003 \\ 2004 \\ 2005 \\ 2006 \\ 2007 \\ \hline\end{array}$

Table 2. Discard time series used in the rebuilding potential analysis and in estimating catch limits and targets associated with the median C/B exploitation ratio. Discards before 1993 were derived from the same source using DK ratios from the DPWS and the species composition using the selectivity ogive method.

Table 3. Survey stratified mean biomass time series used in the rebuilding potential analysis and in estimating catch limits and targets associated with the median C/B exploitation ratio.

Change in Biomass							
Year	Barndoor	earnose L		Rosette	Smooth	Thorny	Winter
1964					-34\%		
1965	50\%				46\%		
1966	-55\%				-32\%		
1967	-46\%				-53\%		0\%
1968	-35\%			-84\%	154\%	63\%	-14\%
1969	-81\%			-39\%	-25\%	29\%	-29\%
1970	23\%			369\%	-20\%	29\%	128\%
1971	157\%			-85\%	-32\%	-27\%	-64\%
1972	-44\%			1094\%	111\%	-23\%	174\%
1973	-96\%			-28\%	-6\%	11\%	58\%
1974	-100\%			3\%	-60\%	-33\%	-55\%
1975				-66\%	-39\%	-19\%	-37\%
1976	181\%	28\%		478\%	-49\%	-30\%	102\%
1977	-100\%	154\%	3\%	-17\%	870\%	87\%	54\%
1978		-80\%	3\%	-64\%	20\%	33\%	22\%
1979		168\%	-53\%	42\%	-60\%	-16\%	3\%
1980	-100\%	64\%	239\%	766\%	89\%	27\%	22\%
1981		-75\%	-32\%	-12\%	-65\%	-27\%	-9\%
1982		25\%	142\%	-92\%	-68\%	-81\%	47\%
1983		-34\%	58\%	-83\%	278\%	273\%	55\%
1984		27\%	-28\%	2791\%	36\%	20\%	4\%
1985	-60\%	72\%	53\%	-82\%	6\%	0\%	-31\%
1986	642\%	78\%	-56\%	-50\%	0\%	-43\%	72\%
1987	-53\%	-41\%	68\%	971\%	-54\%	-42\%	-30\%
1988	-46\%	5\%	10\%	-25\%	198\%	58\%	-32\%
1989	-35\%	-19\%	31\%	-17\%	-55\%	27\%	-33\%
1990	479\%	47\%	-25\%	29\%	51\%	-10\%	41\%
1991	10\%	130\%	20\%	-78\%	-14\%	-4\%	-34\%
1992	-92\%	-63\%	-12\%	586\%	-24\%	-41\%	-24\%
1993	5698\%	43\%	42\%	-38\%	79\%	72\%	-47\%
1994	-75\%	90\%	-52\%	240\%	-56\%	-9\%	11\%
1995	220\%	-65\%	-21\%	-46\%	90\%	-48\%	-6\%
1996	-62\%	30\%	164\%	10\%	-7\%	4\%	15\%
1997	149\%	43\%	-64\%	-70\%	32\%	4\%	8\%
1998	-15\%	83\%	176\%	284\%	-88\%	-24\%	53\%
1999	237\%	-6\%	34\%	34\%	149\%	-26\%	36\%
2000	-4\%	-2\%	-14\%	-51\%	118\%	74\%	-14\%
2001	89\%	56\%	-20\%	267\%	86\%	-60\%	-11\%
2002	43\%	-45\%	-6\%	-57\%	-61\%	31\%	44\%
2003	-29\%	-26\%	1\%	-36\%	71\%	70\%	-40\%
2004	134\%	7\%	11\%	42\%	13\%	-4\%	19\%
2005	-20\%	-26\%	-55\%	37\%	-39\%	-68\%	-35\%
2006	13\%	1\%	3\%	-8\%	61\%	225\%	-5\%
2007	-32\%	60\%		17\%	-58\%	-56\%	50\%

Stratified mean biomass (kg/tow)

Year	Barndoor	Clearnose Little		Rosette	Smooth	Thorny	Winter
1964	1.21				0.33		
1965	1.82				0.48		
1966	0.81				0.32		
1967	0.44			0.02	0.15		2.16
1968	0.28			0.00	0.39	4.42	1.86
1969	0.05			0.00	0.29	5.71	1.32
1970	0.07			0.01	0.23	7.35	3.00
1971	0.17			0.00	0.16	5.36	1.08
1972	0.10			0.02	0.33	4.12	2.96
1973	0.00			0.01	0.31	4.56	4.69
1974				0.01	0.12	3.04	2.10
1975	0.02	0.24		0.00	0.08	2.47	1.31
1976	0.05	0.30		0.02	0.04	1.72	2.66
1977	-	0.77	1.35	0.02	0.38	3.22	4.10
1978	-	0.16	1.39	0.01	0.45	4.29	4.99
1979	0.01	0.42	0.65	0.01	0.18	3.61	5.12
1980	-	0.68	2.21	0.09	0.34	4.60	6.23
1981	-	0.17	1.50	0.08	0.12	3.34	5.67
1982	-	0.21	3.63	0.01	0.04	0.65	8.31
1983	-	0.14	5.72	0.00	0.15	2.41	12.85
1984	0.01	0.18	4.09	0.03	0.20	2.89	13.32
1985	0.00	0.31	6.26	0.01	0.21	2.88	9.18
1986	0.03	0.54	2.75	0.00	0.21	1.63	15.80
1987	0.01	0.32	4.63	0.03	0.10	0.94	11.06
1988	0.01	0.34	5.08	0.02	0.28	1.49	7.56
1989	0.00	0.27	6.63	0.02	0.13	1.88	5.08
1990	0.03	0.40	4.99	0.02	0.19	1.70	7.15
1991	0.03	0.92	5.99	0.01	0.17	1.63	4.72
1992	0.00	0.34	5.30	0.03	0.13	0.96	3.58
1993	0.14	0.49	7.52	0.02	0.23	1.66	1.91
1994	0.03	0.94	3.62	0.07	0.10	1.51	2.12
1995	0.11	0.33	2.87	0.04	0.19	0.78	1.99
1996	0.04	0.43	7.57	0.04	0.18	0.81	2.28
1997	0.10	0.61	2.71	0.01	0.23	0.85	2.46
1998	0.09	1.12	7.47	0.05	0.03	0.65	3.75
1999	0.30	1.05	9.98	0.07	0.07	0.48	5.09
2000	0.29	1.03	8.60	0.03	0.15	0.83	4.38
2001	0.54	1.61	6.84	0.12	0.29	0.33	3.89
2002	0.78	0.89	6.44	0.05	0.11	0.44	5.60
2003	0.55	0.66	6.49	0.03	0.19	0.74	3.39
2004	1.29	0.71	7.22	0.05	0.21	0.71	4.03
2005	1.04	0.52	3.24	0.06	0.13	0.22	2.61
2006	1.17	0.53	3.32	0.06	0.21	0.73	2.48
2007	0.80	0.85		0.07	0.09	0.32	3.71

Strar
Yea
196

Rebuilding prospects

For each managed skate species, the response of survey biomass to changes in catch was examined using the same procedures described in Document 5 of the DEIS Appendix I and the above three catch time series. The results are shown in Figure 1 to Figure 14. This analysis shows whether catch or the relative exploitation ratio (C/B) had any measurable effect on biomass. The top graphs of each panel show a linear least squares regression line and the median value. A negative slope is indicative that high catches lead to low biomass, and vice versa, as would be expected. Positive slopes or no slope are counterintuitive meaning among other things that other factors had more influence over changes in biomass than did the estimated catches.

As was recognized in Document 5 of Appendix I, the relationship between changes in biomass and the catch/biomass ratio are not completely independent, because biomass appears in the denominator of ordinate and the numerator of the abscissa. As a result, the null hypothesis that the slope is significantly different than zero is invalid. Instead, an alternative null hypothesis was developed using a randomization procedure to estimate a slope that resulted if the data were chosen on the basis of random choice alone, but are not truly independent variables.

A randomization test was performed where the change in the three year moving average of biomass and the three year moving average catch/biomass ratio were randomly chosen with replacement, over 1000 iterations in a 20 year artificial time series. The red dashed regression line in each time series represents a threshold where the null hypothesis should be rejected with 95% confidence when the realized slope is less (i.e. more negative). The red dot in each figure represents 2007.

In the Amendment 3 draft, smooth, thorny, and winter skates (all three overfished species) were thought to have a significant relationship between catches and changes in biomass, based on the preponderance of data that biomass increased more frequently when the C / B ratio was below the median value. Other skate species had no such relationship or the slope was counter intuitively positive. The lack of a relationship was attributed to uncertainty in the catch time series, or potentially lagged and poorly understood population dynamics.

The new catch time series and the randomizing test for a significant slope changes this perception. For both sets of winter skate catch estimates (Figure 1 and Figure 2), the C/B slope is not significantly different than no relationship (i.e. cannot reject the null hypothesis with 95% confidence), although the biomass increased 17 out of 19 times for an average of a 54% annual increase when the C/B ratio was below the median. This might have more to do with autocorrelations, because the years with high biomass in the mid-1980s are all clustered below the C/B median.

Thorny skate (Figure 3 and Figure 4) exhibits a flat slope and essentially no relationship between these values, for either catch time series. On the other hand, there does seem to be a significant relationship between C/B and changes in survey biomass for smooth skate (Figure 5 and Figure 6). This relationship appears to be driven by just five years of data, and for the rest of the time series there appears to be no difference in changes in biomass at high catch rates vs. low catch rates.

For rosette skate, the slope between the C/B ratio and changes in biomass are significant and negative, but again this appears to be driven by just two points, which may be related to transient oceanographic conditions in two survey years. Little, clearnose, and barndoor skate all exhibit a flat, nonsignificant slope.

Even though the relationship between the C/B ratio and changes in skate biomass appear in some cases to make sense and indicate that low catches are more likely than not to cause increases in biomass
and rebuilding, none of the relationships are very strong and are probably not very predictive of rebuilding potential at lower catch levels.

Calculation of catch limits

Catch limits and targets defined by the median catch/biomass ratio applied to the annual 3 year moving averages for survey biomass and aggregated over species are shown in Table 4 to Table 8. Using the Draft Amendment 3 catch time series, the perception was that in 2006, catch was close to the target (ACT) and landings were slightly above the TAL. Landings in 2007 had however exceeded the 2007 TAL (the TAL declined due to lower stratified mean biomass ${ }^{7}$ values) and landings were approaching the catch target (which includes both landings and discards). It was anticipated that the discard rate in 2007 would be the same as that in 2006, or might have declined from the effects of Framework 42. Due to the increasing landings in 2007 it was however anticipated that the total catch would be above the ABC and that reductions in landings and catch were required. Amendment 3 proposed alternatives to reduce 2007 landings to the TAL. To meet the target, wing fishery landings would need to decline by 45% and bait fishery landings by $43 \%{ }^{8}$.

In contrast, the new discard estimates for 2004-2006 are substantially higher than previous estimates. As in the Amendment 3 DEIS, 2007 landings are near the catch target (or ACT). Instead of declining by 65%, the new discard estimates are flat or even increasing in recent years. Thus the fraction of total catch attributable to discards is much higher using these new estimates and results in a much lower TAL. Without action to reduce skate discards, the analyses using the new catch data (Figure 16 and Figure 17) indicate that it would take a $57-60 \%$ reduction in skate wing landings and a $63-65 \%$ reduction in skate bait landings to prevent the catch from exceeding the ACT.

[^3]Figure 1. Relationship for winter skate between three year moving average of catch (length composition method) and biomass with no lag.

Catch thresholds and historic change in biomass

Figure 2. Relationship for winter skate between three year moving average of catch (selectivity ogive method) and biomass with no lag.

Catch thresholds and historic change in biomass

Catch			Biomass change				
	Limit (mt)	Threshold	Up	Down	Average	42004-2006	
		All	19	16	16.5\%		
Maximum	41,320	Above median	9	11	10.4\%		
Median	16,586	Below Median	10	5	33.9\%	-7\%	
80\% of media	13,269	Below 80\%	7	2	44.5\%	-25\%	
Percentile	35\%						
Catch/biomass ratio			Biomass change				
			Up	Down	Average	Limit (mt)	42004-2006
		All	19	16	16.5\%		
Maximum	8.02	Above median	2	14	-27.2\%		
Median	4.12	Below Median	17	2	54.5\%	12,087	-32\%
75\% of medic	3.09	Below 75\%	9	1	52.4\%	9,065	-49\%
Percentile	24\%						

Skate Amendment 3

Figure 3. Relationship for thorny skate between three year moving average of catch (length composition method) and biomass with no lag.

Catch thresholds and historic change in biomass

Figure 4. Relationship for thorny skate between three year moving average of catch (selectivity ogive method) and biomass with no lag.

Catch thresholds and historic change in biomass

Figure 5. Relationship for smooth skate between three year moving average of catch (length composition method) and biomass with no lag.

Skate Amendment 3

Figure 6. Relationship for smooth skate between three year moving average of catch (selectivity ogive method) and biomass with no lag.

Skate Amendment 3

Figure 7. Relationship for rosette skate between three year moving average of catch (length composition method) and biomass with no lag.

Catch thresholds and historic change in biomass
Catch
Maximum
Median
80\% of media
Percentile

Catch/biomass rati	
Maximum	26.36
Median	1.8
75\% of media	1.36
Percentile	31

Figure 8. Relationship for rosette skate between three year moving average of catch (selectivity ogive method) and biomass with no lag.

Catch thresholds and historic change in biomass

Catch			Biomass change		Average 42004 -2006		
	Limit (mt)	Threshold	Up	Down			
		All	22	15	46.5\%		
Maximum	228	Above median	10	6	60.9\%		
Median	47	Below Median	12	9	50.4\%	-43\%	
80\% of medis	38	Below 80\%	8	4	45.3\%	-55\%	
Percentile	29\%						
Catch/biomass ratio			Biomass change				
			Up	Down	Average	Limit (mt)	42004-2006
		All	22	15	46.5\%		
Maximum	26.36	Above median	7	11	8.4\%		
Median	2.19	Below Median	15	4	87.1\%	143	70\%
75% of media	1.65	Below 75\%	6	2	129.6\%	107	28\%
Percentile	21\%						

Figure 9. Relationship for little skate between three year moving average of catch (length composition method) and biomass with no lag.

Catch thresholds and historic change in biomass

Figure 10. Relationship for little skate between three year moving average of catch (selectivity ogive method) and biomass with no lag.

Catch thresholds and historic change in biomass

Figure 11. Relationship for clearnose skate between three year moving average of catch (length composition method) and biomass with no lag.

Catch thresholds and historic change in biomass

 Skate Amendment 3

Figure 12. Relationship for clearnose skate between three year moving average of catch (selectivity ogive method) and biomass with no lag.

Catch thresholds and historic change in biomass
 Skate Amendment 3

Figure 13. Relationship for barndoor skate between three year moving average of catch (length composition method) and biomass with no lag.

Catch thresholds and historic change in biomass
 Skate Amendment 3

Figure 14. Relationship for barndoor skate between three year moving average of catch (selectivity ogive method) and biomass with no lag.

Catch thresholds and historic change in biomass
 Skate Amendment 3

Table 4. Calculation of alternative skate catch limits using catch and catch/biomass medians from Draft Amendment 3, using corrected discards.

	Catch	C/B derived catch limits		
Median	80% of medi Median	75% of medi		
Species	290	232	2,685	2,014
Barndoor	521	417	614	460
Clearnose	17,524	14,019	7,649	5,737
Little	26	21	56	42
Rosette	33	26	27	20
Smooth	155	124	50	38
Thorny	17,422	13,938	11,530	8,648
Winter	35,971	28,777	22,612	16,959
Total				
	13,734	10,987	8,634	6,475
Discards	430	344	2,486	1,865
Prohibited species	13,305	10,644	6,147	4,611
Legal species	37%	37%	31%	31%
Discard rate legal sF				
	22,237	17,789	13,978	10,484
Allowable landings	48	38	276	207
Prohibited species	22,189	17,751	13,702	10,277
Legal species				
	15,502	12,402	10,351	7,763
Wing fishery TAL	10%	-12%	-26%	-45%
Change from 2007	6,735	5,388	3,627	2,721
Bait fishery TAL	41%	13%	-24%	-43%
Change from 2007	22,237	17,789	13,978	10,484
TAL	13,734	10,987	8,634	6,475
Discards	35,971	28,777	22,612	16,959
TAC	39%	11%	-13%	-34%
Change from 2007				

Figure 15. Trend in annual ABC, ACT, and TALs derived from applying the median catch/biomass ratio from Draft Amendment 3 catches to historic stratified mean biomass by skate species.

Table 5. Input variables and results application of catch/biomass ratios derived from Draft Amendment 3 catches and applied to stratified mean survey biomass.
$\left.\begin{array}{lccccc} & \begin{array}{c}\text { Catch/biomass index } \\ \text { (thousand mt catch/kg per tow) } \\ \text { Median }\end{array} & \begin{array}{c}\text { Stratified }\end{array} \text { mean survey weight } \\ \text { (kg/tow) }\end{array}\right]$

Table 6. Calculation of alternative skate catch limits using catch and catch/biomass medians from the Data Poor Assessment Workshop length composition method.

| | Catch
 Median
 Species | 80% of medi Median | C/B derived catch limits |
| :--- | ---: | ---: | ---: | ---: |
| Barndoor medi | | | |

Figure 16. Trend in annual ABC, ACT, and TALs derived from applying the median catch/biomass ratio from catches using the length composition method to assign catches and apply them to historic stratified mean biomass by skate species.

Table 7. Input variables and results application of catch/biomass ratios derived from length composition method catches and applied to stratified mean survey biomass.

	Catch/biomass index (thousand $\mathbf{m t}$ catch/kg per tow) Median	$\mathbf{7 5 \%}$ of median	2004-2006	Stratified mean survey weight (kg/tow)	
Species	4.32	3.24	1.17	1.00	Target
Barndoor	2.25	1.69	0.59	0.63	0.52
Clearnose	2.39	1.79	4.59	3.67	6.54
Little	1.18	1.36	0.06	0.06	0.03
Rosette	1.95	1.46	0.19	0.14	0.31
Smooth	2.96	2.22	0.55	0.42	4.41
Thorny	4.12	3.09	3.04	2.93	6.46
Winter			31,945	24,688	64,196
Annual catch limit (ACL/ABC)		23,977	18,546	48,145	
Annual catch target (ACT)		10,067	7,786	20,213	

Table 8. Calculation of alternative skate catch limits using catch and catch/biomass medians from the Data Poor Assessment Workshop selectivity ogive method.

	Catch	C/B derived catch limits		
Species	Median	80\% of medi	Median	75\% of medi
Barndoor	400	320	3,236	2,425
Clearnose	1,110	888	1,548	1,161
Little	10,189	8,151	5,230	3,917
Rosette	47	38	142	107
Smooth	303	242	243	183
Thorny	5,209	4,167	1,334	1,002
Winter	16,586	13,269	12,092	9,069
Total	33,844	27,075	23,825	17,864
Discards	19,962	15,969	14,052	10,536
Prohibited species	5,321	4,256	4,332	3,249
Legal species	14,641	11,713	9,720	7,287
Discard rate legal sr	52\%	52\%	51\%	51\%
Allowable landings	13,882	11,106	9,773	7,328
Prohibited species	591	473	481	361
Legal species	13,291	10,633	9,292	6,967
Wing fishery TAL	10,419	8,336	7,532	5,648
Change from 2007	-26\%	-41\%	-47\%	-60\%
Bait fishery TAL	3,463	2,770	2,241	1,679
Change from 2007	-27\%	-42\%	-53\%	-65\%
TAL	13,882	11,106	9,773	7,328
Discards	19,962	15,969	14,052	10,536
TAC	33,844	27,075	23,826	17,864
Change from 2007	-19\%	-35\%	-43\%	-57\%

Figure 17. Trend in annual ABC, ACT, and TALs derived from applying the median catch/biomass ratio from catches using the selectivity ogive method to assign catches and apply them to historic stratified mean biomass by skate species.

Table 9. Input variables and results application of catch/biomass ratios derived from selectivity ogive method catches and applied to stratified mean survey biomass.

	Catch/biomass index (thousand mt catch/kg per tow) Median		$\mathbf{7 5 \%}$ of median	2004-2006	Stratified mean survey weight 2005-tow) Species 3.23
Barndoor	2.42	1.17	1.00	Target	
Clearnose	2.44	1.83	0.59	0.63	0.62
Little	2.39	1.79	4.59	3.67	6.54
Rosette	2.19	1.65	0.06	0.06	0.03
Smooth	1.69	1.27	0.19	0.14	0.31
Thorny	3.14	2.36	0.55	0.42	4.41
Winter	4.12	3.09	3.04	2.93	6.46
Annual catch limit (ACL/ABC)		30,898	23,826	63,240	
Annual catch target (ACT)		23,162	17,864	47,462	
Total allowable landings (TAL)		9,501	7,328	19,469	

[^0]: ${ }^{1}$ A Data Poor Assessment Workshop (DPWS) was conducted by the Northeast Fisheries Science Center during October 2008 to January 2009, focusing on exploratory assessment analyses of model-resistant species, including the seven managed skate stocks. While the survey time series is believed to be a good representation of changes in skate abundance and biomass, there has been considerable uncertainty in the skate species landings and in discard estimates. One of the important outcomes of the DPWS was two methods to allocate skate catches to species based on where the fishing activity occurred and the observed lengths of skate catches.
 ${ }^{2}$ Other lags and moving average durations were evaluated in the Draft Amendment 3 technical analyses and were not informative, i.e. correlations between catch or relative exploitation and biomass changes were worse.

[^1]: ${ }^{3}$ Analyses were presented at the DPWS that the previous Amendment 3 assumption did not badly violate the survey statistical design and did not skew the biomass proportions or the calculated mean biomass of each species in a statistical area.

[^2]: ${ }^{4}$ These area allocation tables use a peer-reviewed method to allocate dealer reported landings to statistical area level fishing locations.
 ${ }^{5}$ The DPWS estimates use a single selectivity ogive for all skate landings by vessels using gillnets and it was discovered during the review that a substantial fraction of gillnet landings are landed in whole form, presumably targeting little skates for bait.
 ${ }^{6}$ Skates discarded to total live weight of landings of all species on observed trips, which are then applied to total live weight of dealer reported landings of all species.

[^3]: ${ }^{7}$ A considerable portion of the survey biomass decline arises from 2004 dropping out of the three year moving average.
 ${ }^{8}$ These re-estimated TALs are slightly

